线程切换时,线程上下文保存在哪?
在线程切换时,线程的上下文,比如寄存器状态,它们都被保存在哪个位置?
是保存在线程的栈里,还是在TCB里,不敢确定。。
刚刚有搜索过,都说会保存,但都没具体到哪个位置
是不是不同的操作系统都有各自不同的实现方式?
Answers
这个要看具体的线程实现。
据我所知,以Linux的pthread为例,它的一个线程,在内核里和进程是同样的调度单位,相关信息都保存在其对应的 task_struct 结构体里面。
Gnu Pth 这种内核之上的线程库,则采用另一种实现,我没看过源码,但是合理猜测,必然也是用了类似的一个结构体来保存相关信息。
可以参考下Linux进程状态的说明。
比如查看Firefox每个线程的状态:
top -H -p `pidof firefox`
http://blog.csdn.net/tianlesoftware/article/details/6457487
R (task_running) : 可执行状态
S (task_interruptible): 可中断的睡眠状态
D (task_uninterruptible): 不可中断的睡眠状态
T (task_stopped or task_traced): 暂停状态或跟踪状态
Z (task_dead - exit_zombie): 退出状态,进程成为僵尸进程
X (task_dead - exit_dead): 退出状态,进程即将被销毁
running进程:
只有在该状态的进程才可能在CPU上运行。
而同一时刻可能有多个进程处于可执行状态,这些进程的task_struct结构(进程控制块)被放入对应CPU的可执行队列中(一个进程最多只能出现在一个CPU的可执行队列中)。
进程调度器的任务就是从各个CPU的可执行队列中分别选择一个进程在该CPU上运行。
很多操作系统教科书将正在CPU上执行的进程定义为RUNNING状态、而将可执行但是尚未被调度执行的进程定义为READY状态,这两种状态在Linux下统一为TASK_RUNNING状态。
sleeping进程:
处于这个状态的进程因为等待某某事件的发生(比如等待socket连接、等待信号量),而被挂起。
这些进程的task_struct结构被放入对应事件的等待队列中。当这些事件发生时(由外部中断触发、或由其他进程触发),对应的等待队列中的一个或多个进程将被唤醒。
通过ps命令我们会看到,一般情况下,进程列表中的绝大多数进程都处于task_interruptible状态(除非机器的负载很高)。
毕竟CPU就这么一两个,进程动辄几十上百个,如果不是绝大多数进程都在睡眠,CPU又怎么响应得过来。
stopped进程:
向进程发送一个sigstop信号,它就会因响应该信号而进入task_stopped状态,除非该进程本身处于task_uninterruptible状态而不响应信号。
sigstop与sigkill信号一样,是非常强制的。不允许用户进程通过signal系列的系统调用重新设置对应的信号处理函数。
向进程发送一个sigcont信号,可以让其从task_stopped状态恢复到task_running状态。
当进程正在被跟踪时,它处于task_traced这个特殊的状态。“正在被跟踪”指的是进程暂停下来,等待跟踪它的进程对它进行操作。
比如在gdb中对被跟踪的进程下一个断点,进程在断点处停下来的时候就处于task_traced状态。而在其他时候,被跟踪的进程还是处于前面提到的那些状态。
对于进程本身来说,task_stopped和task_traced状态很类似,都是表示进程暂停下来。
而task_traced状态相当于在task_stopped之上多了一层保护,处于task_traced状态的进程不能响应sigcont信号而被唤醒。
只能等到调试进程通过ptrace系统调用执行ptrace_cont、ptrace_detach等操作(通过ptrace系统调用的参数指定操作),或调试进程退出,被调试的进程才能恢复task_running状态。
zombie进程:
在Linux进程的状态中,僵尸进程是非常特殊的一种,它是已经结束了的进程,但是没有从进程表中删除。
太多了会导致进程表里面条目满了,进而导致系统崩溃,倒是不占用其他系统资源。
它已经放弃了几乎所有内存空间,没有任何可执行代码,也不能被调度,
仅仅在进程列表中保留一个位置,记载该进程的退出状态等信息供其他进程收集,除此之外,僵尸进程不再占有任何内存空间。
进程在退出的过程中,处于TASK_DEAD状态。在这个退出过程中,进程占有的所有资源将被回收,除了task_struct结构(以及少数资源)以外。
于是进程就只剩下task_struct这么个空壳,故称为僵尸。
之所以保留task_struct,是因为task_struct里面保存了进程的退出码、以及一些统计信息。
而其父进程很可能会关心这些信息。比如在shell中,$?变量就保存了最后一个退出的前台进程的退出码,而这个退出码往往被作为if语句的判断条件。
当然,内核也可以将这些信息保存在别的地方,而将task_struct结构释放掉,以节省一些空间。
但是使用task_struct结构更为方便,因为在内核中已经建立了从pid到task_struct查找关系,还有进程间的父子关系。
释放掉task_struct,则需要建立一些新的数据结构,以便让父进程找到它的子进程的退出信息。
子进程在退出的过程中,内核会给其父进程发送一个信号,通知父进程来“收尸”。
父进程可以通过wait系列的系统调用(如wait4、waitid)来等待某个或某些子进程的退出,并获取它的退出信息。
然后wait系列的系统调用会顺便将子进程的尸体(task_struct)也释放掉。
这个信号默认是SIGCHLD,但是在通过clone系统调用创建子进程时,可以设置这个信号。
如果他的父进程没安装SIGCHLD信号处理函数调用wait或waitpid()等待子进程结束,又没有显式忽略该信号,那么它就一直保持僵尸状态,子进程的尸体(task_struct)也就无法释放掉。
如果这时父进程结束了,那么init进程自动会接手这个子进程,为它收尸,它还是能被清除的。
但是如果如果父进程是一个循环,不会结束,那么子进程就会一直保持僵尸状态,这就是为什么系统中有时会有很多的僵尸进程。
当进程退出的时候,会将它的所有子进程都托管给别的进程(使之成为别的进程的子进程)。
托管的进程可能是退出进程所在进程组的下一个进程(如果存在的话),或者是1号进程。
所以每个进程、每时每刻都有父进程存在。除非它是1号进程。1号进程,pid为1的进程,又称init进程。